

This article was downloaded by:

On: 30 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Vibrational Spectrum of Tribromoethanol

M. I. Suero^a; M. J. Martín-Delgado^a

^a Department of Physics, Badajoz, Spain

To cite this Article Suero, M. I. and Martín-Delgado, M. J. (1992) 'Vibrational Spectrum of Tribromoethanol', *Spectroscopy Letters*, 25: 8, 1243 — 1256

To link to this Article: DOI: 10.1080/00387019208017862

URL: <http://dx.doi.org/10.1080/00387019208017862>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

VIBRATIONAL SPECTRUM OF TRIBROMOETHANOL

Key Words: Infrared, Raman, Structure, Tribromoethanol.

M.I. Suero* and M.J. Martín-Delgado.

Department of Physics. (06071) Badajoz. Spain.

ABSTRACT:

The molecular structure of tribromoethanol has been studied by Ab Initio theoretical calculations. The IR spectrum has been recorded in the range 4000–200 cm⁻¹. Whereas, the Raman spectrum has been determined by means of a SPEX 1403 spectrometer using the 5145 Å exciting line of a Spectra-Physics 164 Ar ion laser. Depolarization ratios were also measured. The fundamental vibrations of CBr₃CH₂OH as well as some overtones, combinations and difference bands were assigned.

* Author to whom correspondence should be addressed. Departamento de Física, Ftad. de Ciencias, Avda. de Elvas, s/n. 06071 Badajoz, Spain.

INTRODUCTION

Many investigations have been carried out in regard to assignment of infrared and Raman spectra of similar molecules. The interpretation of the vibrational spectra of 2,2,2 -trichloroethanol¹⁻⁷ and 2,2,2 -trifluoroethanol³⁻¹² have been extensively studied however, a detailed study has not been published for 2,2,2 -tribromoethanol so far. The few data published on 2,2,2 -Tribromoethanol is the I.R. spectra related only to the solid state and in dilute solution, from 1500 to 450 cm⁻¹, by Travert and Lavalle⁶.

We have recently studied the vibrational spectra of tribromo compounds with two carbon atoms such as tribromoacetamide¹³⁻¹⁴, tribromoacetonitrile¹⁵⁻¹⁷, tribromoacetic acid¹⁸⁻¹⁹ and tribromo acetaldehyde²⁰. We now complete the series with a study of the vibrational spectrum of 2,2,2 -Tribromoethanol.

A complete structural analysis for 2,2,2 -tribromoethanol is not available. In this paper we assume that the equilibrium structure has C₂ symmetric by correlation to similar molecules^{6-7, 21-23}.

Ab Initio theoretical calculations were used to optimize the geometry. On this basis, the IR and Raman spectra of tribromoethanol has been assigned for all the recorded bands in the range 4000 – 50 cm⁻¹.

EXPERIMENTAL

The sample of 2,2,2 -tribromoethanol from Aldrich was purified by recrystallization.

TABLE 1.— Summary of the frequencies (ν) and proposed assignments in infrared and Raman spectra of 2,2,2-tribromoethanol.

IR $\nu(\text{cm}^{-1})I^a$	IR (D) $\nu(\text{cm}^{-1})I^a$	RAMAN $\nu(\text{cm}^{-1})I^a \rho^b$	ASSIGNMENT
3294 vs			$\nu(\text{OH}); A'$
2945 s	2939 m		$\nu_{\text{as}}(\text{CH}_2); A''$
2915 vs	2910 s		$\nu_s(\text{CH}_2); A'$
2853 m	2852 s		$2.\delta_{\text{as}}(\text{CH}_2)$
	2456 m		$\nu(\text{OD}); A'$
2340 m	2338 m		$\delta_s^s(\text{CH}_2) + \nu(\text{CO}); A'$
1504 w	1500 w		$\nu_s(\text{CH}_2) - \delta_{\text{as}}(\text{CH}_2); A''$
1440 m	1437 m		$\delta_{\text{as}}(\text{CH}_2); A''$
1395 s			$\delta(\text{OH}); A'$
1355 s	1355 s		$\delta_s^s(\text{CH}_2); A'$
1234 s	1231 m		$\delta_s(\text{CH}_2); A'$
1086 vs	1086 vs		$\nu(\text{CO}); A'$
1075 sh			$\nu(\text{CC}); A'$
1009 s	1009 m		$\tau(\text{CH}_2); A''$
	902 m		$\delta(\text{OD}); A'$
749 vs	745 s	748 m(p)	$\nu_s^s(\text{CBr}_3); A'$
632 s	630 s	630 m(dp)	$\nu_{\text{as}}(\text{CBr}_3); A''$
604 sh		610 m (d)	$\gamma(\text{OH}); A''$
484 s	482 vs	450 m(p)	$\nu_s(\text{CBr}_3); A'$
445 m		440 w(p)	$\delta(\text{CCO}); A'$
360 w		362 w	$2\delta_s(\text{CBr}_3); A''$
344 w	344 vs	343 s (dp)	$\delta_{\text{as}}(\text{CBr}_3); A''$
290 m		290 m	$\tau(\text{OH}); A''$
219 w		218 vs (p)	$\delta_s^s(\text{CBr}_3); A'$
		184 m (p)	$\delta_s(\text{CBr}_3); A'$
		155 vs (dp)	$\tau_{\text{as}}(\text{CBr}_3); A''$
		142 s (p)	$\tau_s(\text{CBr}_3); A'$

a) For comparison of relative intensities, the symbols v = very; s = strong; m = medium and w = weak are used.

b) p = polarized band; dp = depolarized band.

Raman Spectra were obtained with a Cary 82 and a Jobin Iyon U-1000 spectrometer using the 5145 Å exciting line of a Spectra-Physics 164 Ar ion laser.

Infrared spectra was recorded in the region 4000–200 cm^{-1} with a Perkin-Elmer 399 spectrophotometer. KBr pellets and mull techniques were used and no significant interaction with the halide was detected. The instrument was calibrated with polystyrene films as well as with indene/camphor/cyclohexanone mixtures²⁴. We estimated an error of ± 2 cm^{-1} in the Raman frequencies and $\pm 0.5 \text{ cm}^{-1}$ in the IR data.

The experimental results are summarized in Table 1 where frequencies and the proposed assignments are given for the fundamentals, overtones, combinations and difference bands, respectively.

The numerical calculations were performed on a VAX-3100 STATION Computer.

RESULTS AND DISCUSSIONS

The vibrational assignments of 2,2,2 -tribromoethanol are based on correlations to the related molecules, 2,2,2 -trichloroethanol¹⁻⁷, 2,2,2 -trifluoroethanol³⁻¹², tribromoacetamide¹³⁻¹⁴, tribromoacetonitrile¹⁵⁻¹⁷, tribromoacetic acid¹⁸⁻¹⁹ and bromal²⁰. According to the C_s point group, the fundamental vibrations of 2,2,2 -tribromoethanol can be decomposed into 13 vibrations of A' species and 8 vibrations of A'' species. In the Table 2 the symmetry coordinates, the fundamental vibrations and the correspondence symmetry species for 2,2,2 -tribromoethanol can be observed.

TABLE 2.— The symmetry coordinates, the fundamental vibrations and the correspondence symmetry species for 2,2,2 -tribromoethanol.

Symmetry coordinates	Fundamental vibrations	Symmetry species
$S_1 = d$	$\nu(\text{OH})$	A'
$S_2 = r$	$\nu(\text{CO})$	A'
$S_3 = l$	$\nu(\text{CC})$	A'
$S_4 = 1/\sqrt{2}(t_1+t_2)$	$\nu_s(\text{CH}_2)$	A'
$S_5 = 1/\sqrt{2}(t_1-t_2)$	$\nu_{as}(\text{CH}_2)$	A''
$S_6 = 1/\sqrt{6}(2\omega - \psi_1 - \psi_2)$	$\delta_s(\text{CH}_2)$	A'
$S_7 = 1/2(\varphi_1 + \varphi_2 - \psi_1 - \psi_2)$	$\delta^s(\text{CH}_2)$	A'
$S_8 = 1/\sqrt{2}(\varphi_1 - \varphi_2)$	$\delta_{as}(\text{CH}_2)$	A''
$S_9 = 1/\sqrt{2}(\psi_1 - \psi_2)$	$r(\text{CH}_2)$	A''
$S_{10} = 1/\sqrt{6}(2\beta - \psi_1 - \psi_2)$	$\delta(\text{CCO})$	A'
$S_{11} = 1/\sqrt{3}(s_1 + s_2 + s_3)$	$\nu_s(\text{CBr}_3)$	A'
$S_{12} = 1/\sqrt{6}(2s_1 - s_2 - s_3)$	$\nu^s(\text{CBr}_3)$	A'
$S_{13} = 1/\sqrt{2}(s_2 - s_3)$	$\nu_{as}(\text{CBr}_2)$	A''
$S_{14} = 1/\sqrt{6}(\delta_1 + \delta_2 + \delta_3 - \gamma_1 - \gamma_2 - \gamma_3)$	$\delta_s(\text{CBr}_3)$	A'
$S_{15} = 1/\sqrt{6}(2\delta_1 - \delta_2 - \delta_3)$	$\delta^s(\text{CBr}_3)$	A'
$S_{16} = 1/\sqrt{2}(\delta_2 - \delta_3)$	$\delta_{as}(\text{CBr}_2)$	A''
$S_{17} = 1/\sqrt{6}(2\gamma_1 - \gamma_2 - \gamma_3)$	$r_s(\text{CBr}_3)$	A'
$S_{18} = 1/\sqrt{2}(\gamma_1 - \gamma_2)$	$r_{as}(\text{CBr}_2)$	A''
$S_{19} = \alpha$	$\delta(\text{OH})$	A'
$S_{20} = \tau_1$	$\tau(\text{CBr}_3)$	A''
$S_{21} = \tau_2$	$\tau(\text{OH})$	A''

In order to carry out an assignment of the vibrational spectrum, we have classified the normal vibrations as: a) vibrations of CBr_3 group; b) Hydroxyl vibrations and c) other fundamentals.

a) Vibrations of CBr_3 group.

— Stretching vibrations:

Three frequencies are expected in the region $800-500 \text{ cm}^{-1}$ which can be attributed to the stretching vibrations of CBr_3 group.

The $\nu_s(\text{CBr}_3)$; A' vibration is assigned to the strong 450 cm^{-1} band in Raman. In I.R. this band is at 484 cm^{-1} with an isotopic shift of 2 cm^{-1} . The observed depolarization ratio confirms the assignment previously proposed for the above fundamental.

We have assigned the strong 632 cm^{-1} band with an isotopic shift of 2 cm^{-1} in I.R. to the $\nu_{as}(\text{CBr}_3)$; A'' . This fundamental has been assigned to the depolarized Raman band at 630 cm^{-1} . Finally, we have assigned the medium band at 748 cm^{-1} and 749 cm^{-1} with an isotopic shift of 4 cm^{-1} in Raman and I.R. respectively, to the $\nu_s^r(\text{CBr}_3)$; A' . This assignment agrees very well with the Travert and Lavallee's⁶ counter part.

— Deformational frequencies

Five bands are expected in the region $100-400 \text{ cm}^{-1}$ whose origin can reasonably be attributed to the deformational modes of the CBr_3 group.

By considering that symmetric CBr_3 deformation arises at lower frequency than the antisymmetric CBr_3 deformation, the symmetric rocking vibration which must be at lower frequency than the antisymmetric rocking vibration. According with literature²⁰, we have assigned the strong band at 142 cm^{-1} to $\tau_s(\text{Br}_3\text{C})$; A' , and the very strong 155 cm^{-1} band to $\tau_{as}(\text{CBr}_3)$; A'' . The observed depolarization ratio confirms the assignment previously proposed for the fundamental.

The medium band at 184 cm^{-1} and the very strong band at 218 cm^{-1} are assigned to $\delta_s(\text{CBr}_3); A'$, and $\delta_s'(\text{CBr}_3) A'$ respectively, which results very similar to tribromoacetic acid¹⁸ and Bromal²⁰.

The fundamental $\delta_{as}(\text{CBr}_3)A''$ has been assigned to the depolarized Raman band at 343 cm^{-1} which appears at 344 cm^{-1} in I.R counter part. Its observed depolarization ratio confirms the previous assignment, proposed for this fundamental.

Finally, the torsional vibration $t(\text{Br}_3\text{C}); A''$ is expected to appear at very low frequency. Since in the case of the compound $\text{Cl}_3\text{CCH}_2\text{OH}$ ⁷ it has been calculated at 42 cm^{-1} . In the present case, it was able to be assigned since it is out of range of the measurement equipment.

b) Hydroxyl vibrations

These vibrations are $\nu(\text{OH}); A'$, $\delta(\text{OH}); A'$, $\gamma(\text{OH}); A''$ and $r(\text{OH}); A''$.

The O—H stretching band for hydroxilyc groups with hidrogen bonding (inter or intramoleculaires) is broad and complex and appear at lower frequency than when there is not these class of bridges. A broad and strong band is recorded at 3294 cm^{-1} in the I.R. spectra of 2,2,2-Tribromoethanol as correspond with intramolecular hydrogen bridges between OH and others functional groups and with polymer structures. This vibration appears at 2456 cm^{-1} in the deuterated specie where 1.34 is the shift factor.

The O—H deformation $\delta(\text{OH}); A'$; has been assigned to the strong band that appears at 1395 cm^{-1} in the I.R spectrum of normal compound. This band disappears for the deuterated specie. The assignment agrees very well with the assignment described by Travert and Lavallee⁶ at 1389 cm^{-1} .

In addition, a new band at 902 cm^{-1} appears in the deuterated specie that we have assigned to $\delta(\text{OD})$.

Around 650 cm^{-1} , a band for alifatic alcohols attributable to $\gamma(\text{OH})$ along with other band $\nu(\text{CBr}_3)$, are expected.

At 632 cm^{-1} in the I.R. spectrum of normal 2,2,2-Tribromoethanol a band with a shoulder at 604 cm^{-1} , appears which remains in the deuterated compound counter part too, while the shoulder disappears. We have assigned the fundamental $\gamma(\text{OH})\text{A}''$ to the shoulder at 604 cm^{-1} and 610 cm^{-1} in I.R and Raman respectively.

Finally, the $\tau(\text{OH})$ vibration has been assigned to the medium band at 290 cm^{-1} in the I.R. an Raman spectra of the normal compound. This band appears at similar frequency in Trichloroethanol¹⁻⁷ and trifluoroethanol⁸⁻¹².

c) Other fundamentals

Corresponding to this group the following vibrations are expected:

The fundamental $\nu_{\text{as}}(\text{CH}_2)\text{A}''$ has been assigned to the strong band at 2945 cm^{-1} and 2939 cm^{-1} in I.R. of the normal compounds and deuterated respectively.

The strong band at 2915 cm^{-1} (2910 cm^{-1} for the deuterated specie) in I.R. is assigned to $\nu_{\text{s}}(\text{CH}_2)\text{A}'$. This assignment compares well with the Perttila's⁷ assignment.

The absorption band at 1440 cm^{-1} has been assigned to the $\delta_{\text{as}}(\text{CH}_2)\text{A}''$ in the normal compound and at 1437 cm^{-1} in the deuterated molecule.

On the other hand, the $\delta_{\text{s}}(\text{CH}_2)\text{A}'$ has been assigned to the strong band at 1355 cm^{-1} in the I.R. spectrum.

The $\delta_s(\text{CH}_2);A'$ vibration is assigned to the strong band at 1234 cm^{-1} and to the medium band at 1231 cm^{-1} in I.R. in the normal and deuterated compounds respectively.

We have assigned the strong band in I.R. at 1009 cm^{-1} to $\nu(\text{CH}_2);A''$ according with literature⁷.

At 1086 cm^{-1} in the I.R. spectrum of normal 2,2,2 Tribromoethanol a very strong band with a shoulder at 1075 cm^{-1} appears. We have assigned the band at 1086 cm^{-1} in the compound normal and deuterated to $\nu(\text{CO});A'$ and the shoulder at 1075 cm^{-1} to $\nu(\text{CC});A'$, according to the interval of frequencies for this vibrations described in the literature⁷.

Finally, the medium band at 445 cm^{-1} in I.R. and 440 cm^{-1} in Raman is assigned to $\delta(\text{CCO});A'$. Its observed depolarization ratio confirms the previous assignment, proposed for this fundamental.

Overtones and combinations.

In addition to the fundamental vibrations, we have assigned some overtones, combinations and difference bands which are shown in Table I.

STRUCTURE

The structure of similar molecules has been determined by electron diffraction²¹ and theoretically⁶⁻⁷, but in the case of the 2,2,2-Tribromoethanol a complete structural analysis is not available yet. Then, we have performed Ab Initio calculations with the Gaussian 86^(a) program in order to determine the minimum energy geometry. These calculations were performed using standard bond lengths and bond angles for the alcohol group and for the CBr_3 group the bromal molecular parameters²⁸.

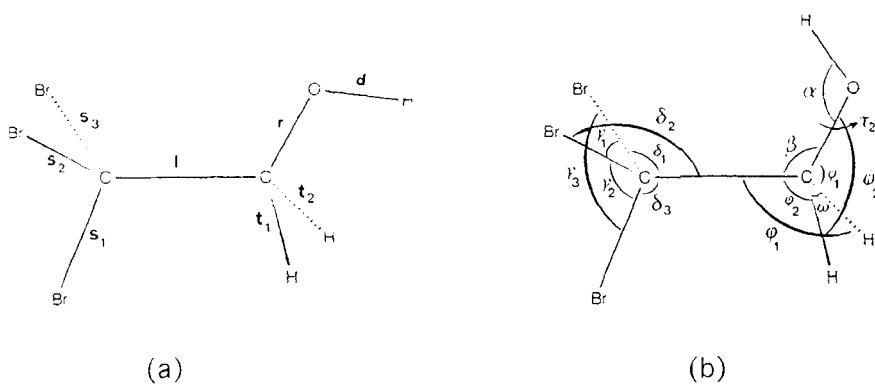


FIG. 1.— The conformers and internal coordinates of 2,2,2—tribromoethanol
 (a) trans, (b) gauche conformer.

TABLE 3.— The calculated bond lengths, bond angles and dihedral angles
 for 2,2,2—tribromoethanol.

Bond lengths		Bond angles		Dihedral angles	
C1—C2	1.5729				
C1—Br3	1.9450	Br3—C1—C2	108.500		
C1—Br4	1.9450	Br4—C1—C2	108.500	Br4—C1—C2—Br3	-120.0
C1—Br5	1.9450	Br5—C1—C2	108.500	Br5—C1—C2—Br3	120.0
C2—O6	1.4393	O6—C2—C1	114.117	O6—C2—C1—Br4	60.0
O6—H7	0.9896	H7—O6—C2	105.714	H7—O6—C2—Br3	0.0
C2—H8	1.0963	H8—C2—C1	108.150	H8—C2—C1—Br3	60.0
C2—H9	1.0963	H9—C2—C1	108.150	H9—C2—C1—Br3	-60.0

FIG. 2.— Numbering of atoms and the orientation of the cartesian axes in 2,2,2-tribromoethanol.

As a consequence of the rotation about the C—O bond, for the 2,2,2-tribromoethanols two stable conformers exist: trans and gauche, as can be seen in figure 1. The formation of trans conformer should be favoured by the formation of intermolecular hydrogen bridges, but in most haloethanols the gauche component is found to prevail⁶. A possible explanation of this fact is that the intramolecular OH—Br interaction stabilizes the gauche conformer. In the case of 2,2,2-tribromoethanol, we found that the trans

conformer is more stable energetically and obtained the bond angles and the bond lengths as observed in Table 3. Figure 2 shows numbering of atoms and the orientation of the cartesian axes in 2,2,2-tribromoethanol.

These parameters were obtained by the Roothaan's SCF-LCAO-MO non empirical method²⁵ on a VAX-STATION computer, with the GAUSSIAN-86 package. The STO-3G basis sets with standard exponents²⁶⁻²⁷ have been used for the H, C, O, and Br. The Bernal optimization process and a convergence criterium of 10^{-11} was used.

ACKNOWLEDGEMENTS

The authors would like to thank Dr. Román-Galán, Dept. of Organic Chemistry, and Dr. Duque-Carrillo, Dept. of Electronic, University of Extremadura, for help and use of the laboratory for sample preparation.

REFERENCES

- 1.— Haszeldine R.N., J. Chem. Soc. 1953; 1757.
- 2.— Ahmad, Mansoor., Shamin, Shahida., Pak. J. Sci. Ind. Res. 1988; 31: 815.
- 3.— Krueger P.J., and Mettee H.D., Can. J. Chem. 1964; 42: 340.
- 4.— Azrak R.G., and Wilson E.B., J. Chem. Phys., 1970; 52: 5299.
- 5.— Travert J., and Lavallee J.C., Compt. Rend. 1973; 277B: 719.
- 6.— Travert J., and Lavallee J.C., Spectrochim. Acta. 1976; 32A: 637.

- 7.— Perttila M., *Spectrochim. Acta* 1979; 35A: 585.
- 8.— Barnes J.A., Hallam H.E., and Jones D., *Proc. R. Soc. Lond.* 1973; A335: 97.
- 9.— Schrems D., and Luck W.A.P., *Fachbereich Phys. Chem.* 1982; 80: 477.
- 10.— Malinovsky A.L., and Ryabov E.A., *Chem. Phys.* 1990; 145: 389.
- 11.— Mentel, Thomas F., and Kuemmel, Wilhelm., *J. Mol. Liq.* 1990; 46: 239.
- 12.— Durig, J.R., and Larsen, R.A., *J. Mol. Struct.* 1990; 238: 195.
- 13.— Arenas J.F., Marcos J.I., y Suero M.I., *An. Quim.* 1984; 80: 236.
- 14.— Suero M.I., Robles J., and Márquez F., *Spectroscopy Letters*. 1986; 19(8): 851.
- 15.— Arenas J.F., Marcos J.I., and Suero M.I., *J. Raman Spectrosc.* 1984; 15: 132.
- 16.— Cardenete A., Arenas J.F., and Márquez F., *Can. J. Spectrosc.* 1985; 30: 40.
- 17.— Suero M.I., MacNeil L.E., and Márquez F., *J. Raman Spectrosc.* 1987; 18: 273.
- 18.— Márquez F., Suero M.I., Otero, J.C. and Marcos, J.I., *Spectroscopy Letters*. 1992.
- 19.— Katon, J.E., Kleinlein, R.L., *Spectrochim. Acta* 1973; 29A:791.
- 20.— Suero M.I., Márquez F., and M.J. Martín-Delgado., *Spectroscopy Letters*. 1990; 23(6): 771.

- 21.- Livingston R.L., and Vaughan G., *J. Am. Chem. Soc.* 1956; 78: 2711.
- 22.- Kalasinsky, U.F., and Anjoria, H.V., *J. Phys. Chem.* 1980; 84: 1940.
- 23.- Erne D., Rolka K., and Schwyzer R., *Helv. Chim. Acta* 1986; 69: 1807.
- 24.- Cole A.R.H., *Tables of Wavenumbers for the calibrations of infrared Spectrometers*. Pergamon Press, New York, 1977.
- 25.- Roothaan., *Rev. Mod. Phys.* 1951; 23: 69.
- 26.- Hehre W.J., Stewar R.F., and Poble J.A., *J. Chem. Phys.* 1969; 51: 2657.
- 27.- Pietro W.J., Beverly L.A., Hehre W.J., and Stewart R.F., *Inorg. Chem.* 1980; 19: 2225.
- 28.- Hagen G., *Acta Chem. Scand.* 1971; 25: 813.

Date Received: 06/09/92
Date Accepted: 07/10/92